Self-calibrated evaporation-based disaggregation of SMOS soil moisture: An evaluation study at 3 km and 100 m resolution in Catalunya, Spain
نویسندگان
چکیده
A disaggregation algorithm is applied to 40 km resolution SMOS (Soil Moisture and Ocean Salinity) surface soil moisture using 1 km resolution MODIS (MODerature resolution Imaging Spectroradiometer), 90 m resolution ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer), and 60 m resolution Landsat-7 data. DISPATCH (DISaggregation based on Physical And Theoretical scale CHange) distributes high-resolution soil moisture around the low-resolution observed mean value using the instantaneous spatial link between optical-derived soil evaporative efficiency (ratio of actual to potential evaporation) and near-surface soil moisture. The objective is three-fold: (i) evaluating DISPATCH at a range of spatial resolutions using readily available multi-sensor thermal data, (ii) deriving a robust calibration procedure solely based on remotely sensed data, and (iii) testing the linear or nonlinear behaviour of soil evaporative efficiency. Disaggregated soil moisture is compared with the 0-5 cm in situ measurements collected each month from April to October 2011 in a 20 km square spanning an irrigated and dry Preprint submitted to Remote Sens. Environ. November 8, 2012 land area in Catalunya, Spain. The target downscaling resolution is set to 3 km using MODIS data and to 100 m using ASTER and Landsat data. When comparing 40 km SMOS, 3 km disaggregated and 100 m disaggregated data with the in situ measurements aggregated at corresponding resolution, results indicate that DISPATCH improves the spatio-temporal correlation with in situ measurements at both 3 km and 100 m resolutions. A yearly calibration of DISPATCH is more efficient than a daily calibration. Assuming a linear soil evaporative efficiency model is adequate at kilometric resolution. At 100 m resolution, the very high spatial variability in the irrigated area makes the linear approximation poorer. By accounting for non-linearity effects, the slope of the linear regression between disaggregated and in situ measurements is increased from 0.2 to 0.5. Such a multi-sensor remote sensing approach has potential for operational multi-resolution monitoring of surface soil moisture and is likely to help parameterize soil evaporation at integrated spatial scales.
منابع مشابه
AN EVALUATION OF SOIL mOISTURE DOwNSCALING TECHNIQUES USING L-bAND AIRbORNE ObSERVATIONS
69 m7 The European Space Agency (ESA) will launch the Soil Moisture and Ocean Salinity (SMOS) mission in late 2009. This mission is aimed at monitoring, globally, surface soil moisture and sea surface salinity from radiometric L-band observations [1]. Soil moisture is a critical state variable of the terrestrial water cycle and the factor that links the global water, energy and carbon cycles. C...
متن کاملAn improved algorithm for disaggregating microwave-derived soil moisture based on red, near-infrared and thermal-infrared data
Accurate high-resolution soil moisture data are needed for a range of agricultural and hydrologic activities. To improve the spatial resolution of ∼40 km resolution passive microwave-derived soil moisture, a methodology based on 1 km resolution MODIS (MODerate resolution Imaging Spectroradiometer) red, near-infrared and thermal-infrared data has been implemented at 4 km resolution. The three co...
متن کاملDisaggregation as a top-down approach for evaluating 40 km resolution SMOS data using point-scale measurements: Application to AACES-1
The SMOS (Soil Moisture and Ocean Salinity) satellite provides soil moisture data at about 40 km resolution globally. Validation of SMOS data using in situ measurements is complicated due to the large integrated scale of remote sensing observations. Nevertheless, different approaches can be used to circumvent the direct comparison. One is to upscale ground measurements using aggregation rules. ...
متن کاملTowards soil property retrieval from space: An application with disaggregated satellite observations
Soil moisture plays a key role in most environmental processes, as evaporation and transpiration are heavily dependent on soil moisture variability. While it is one of the few important hydrological variables that can be directly observed, the high spatial and temporal variability makes it difficult to measure globally or even regionally. Reliance is therefore placed on land surface models to p...
متن کاملPerformance Metrics for Soil Moisture Downscaling Methods: Application to DISPATCH Data in Central Morocco
Data disaggregation (or downscaling) is becoming a recognized modeling framework to improve the spatial resolution of available surface soil moisture satellite products. However, depending on the quality of the scale change modeling and on the uncertainty in its input data, disaggregation may improve or degrade soil moisture information at high resolution. Hence, defining a relevant metric for ...
متن کامل